Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes.

نویسندگان

  • Beate Fiedler
  • Suzanne M Lohmann
  • Albert Smolenski
  • Stephan Linnemuller
  • Burkert Pieske
  • Frank Schroder
  • Jeffery D Molkentin
  • Helmut Drexler
  • Kai C Wollert
چکیده

Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I (PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly understood. Here, we show that PKG I inhibits CM hypertrophy by targeting the calcineurin-NFAT signaling pathway. Calcineurin, a Ca2+-dependent phosphatase, promotes hypertrophy in part by activating NFAT transcription factors which induce expression of hypertrophic genes, including brain natriuretic peptide (BNP). Activation of PKG I by NO/cGMP in CM suppressed NFAT transcriptional activity, BNP induction, and cell enlargement in response to alpha(1)-adrenoreceptor stimulation but not in response to adenoviral expression of a Ca2+-independent, constitutively active calcineurin mutant, thus demonstrating NO-cGMP-PKG I inhibition of calcineurin-NFAT signaling upstream of calcineurin. PKG I suppressed single L-type Ca2+-channel open probability, [Ca2+]i transient amplitude, and, most importantly, L-type Ca2+-channel current-induced NFAT activation, indicating that PKG I targets Ca2+-dependent steps upstream of calcineurin. Adenoviral expression of PKG I enhanced NO/cGMP inhibitory effects upstream of calcineurin, confirming that PKG I mediates NO/cGMP inhibition of calcineurin-NFAT signaling. In CM overexpressing PKG I, NO/cGMP also suppressed BNP induction and cell enlargement but not NFAT activation elicited by constitutively active calcineurin, which is consistent with additional, NFAT-independent inhibitory effect(s) of PKG I downstream of calcineurin. Inhibition of calcineurin-NFAT signaling by PKG I provides a framework for understanding how NO inhibits cardiac myocyte hypertrophy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes.

Cardiac hypertrophy occurs in a number of disease states associated with chronic increases in cardiac work load. Although cardiac hypertrophy may initially represent an adaptive response of the myocardium, ultimately, it often progresses to ventricular dilatation and heart failure. Much investigation has focused on the signaling pathways controlling cardiac hypertrophy at the level of the singl...

متن کامل

GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy

Testosterone induces cardiac hypertrophy through a mechanism that involves a concerted crosstalk between cytosolic and nuclear signaling pathways. Nuclear factor of activated T-cells (NFAT) is associated with the promotion of cardiac hypertrophy, glycogen synthase kinase-3β (GSK-3β) is considered to function as a negative regulator, mainly by modulating NFAT activity. However, the role played b...

متن کامل

Decreased KCNE2 Expression Participates in the Development of Cardiac Hypertrophy by Regulation of Calcineurin-NFAT (Nuclear Factor of Activated T Cells) and Mitogen-Activated Protein Kinase Pathways.

BACKGROUND KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca2+ channels. Given the important roles of altered Ca2+ signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy. METHODS AND RESULTS We found...

متن کامل

NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro.

Biomechanical stress on the heart results in activation of numerous signaling cascades, leading to cardiomyocyte hypertrophy, apoptosis, and ultimately, heart failure. The Ca2+-dependent phosphatase calcineurin is an essential mediator of cardiac hypertrophy, and in most but not all studies, calcineurin inhibition attenuated cardiac hypertrophy in vivo. However, calcineurin inhibition has been ...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 17  شماره 

صفحات  -

تاریخ انتشار 2002